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Supplementary Figure 1. Overlap of ON and OFF subregions in single receptive fields

(a) Receptive fields from eight example cells are shown, each with both the ON and OFF 
subregions indicated. (b) The overlap between the ON and OFF subregion in individual 
receptive fields was low, indicating that these neurons were mostly simple cells. The arrow 
indicates the mean of the distribution.
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Supplementary Figure 1. Overlap of ON and OFF subregions in single receptive fields
(a) Receptive fields from eight example cells are shown, each with both the ON and OFF subregions indicated. 
(b) The overlap between the ON and OFF subregion in individual receptive fields was low, indicating that these 
neurons were mostly simple cells.
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Supplementary Figure 2. Overlap of full receptive fields

The gray bars show  the distribution of  overlap of  full receptive fields (i.e., both the ON and OFF 
subregion together) between pairs of cells. The distribution of overlaps more closely follows that 
of the RF subregions after random repositioning. By contrast, the distribution of overlaps of  RF 
subregions as they are observed, shows a clear trend toward very high overlap.
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Supplementary Figure 2. Overlap of full receptive fields
The gray bars show the distribution of overlap of full receptive fields (i.e., both the ON and OFF subregion together) 
between pairs of cells. The distribution of overlaps more closely follows that of the RF subregions after random repo-
sitioning. By contrast, the distribution of overlaps of RF subregions as they are observed, shows a clear trend toward 
very high overlap.
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Supplementary Figure 3. RF subregions share not only an area of visual space, but spatial structure as well
In order to explore the internal structure of shared RF subregions, we computed pair-wise image correlation coeffi-
cients. (a) Two example pairs of subregions show the typical high degree of overlap in their area maps. (b) The spatial 
structure maps for these pairs of subregions (the filtered and z scored spike-triggered stimulus averages) appear 
highly similar. The maps on the left and right of panel (b) correspond to the red and blue outlines in panel (a), respec-
tively. (c) The image correlation for the spatial structure maps was higher than the image correlation of the area maps. 
This shows that shared RF subregions share not only an area of visual space, but a spatial structure within that area 
as well.
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Supplementary Figure 3. RF subregions share not only an area of visual space, but 
spatial structure as well

In order to explore the internal structure of shared RF subregions, we computed pair-wise image 
correlation coefficients. (a) Two example pairs of subregions show  the typical high degree of 
overlap in their area maps. (b) The spatial structure maps for these pairs of  subregions (the 
filtered and z scored spike-triggered stimulus averages) appear highly similar. The maps on the 
left and right of panel (b) correspond to the red and blue outlines in panel (a), respectively. (c) 
The image correlation for the spatial structure maps was higher than the image correlation of 
the area maps. This shows that shared RF subregions share not only an area of  visual space, 
but a spatial structure within that area as well.
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Supplementary Figure 4. Relationship between RF subunit overlap and neuron separation

Each data point represents one pair of  neurons in the same population, with the distance 
measured between the center of  their respective cell bodies plotted against the RF subregion 
overlap index for that pair. There was no significant correlation between the values at this scale  
(r = 0.036, n = 3422 pairs), despite large scale retinotopy.
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Supplementary Figure 4. Relationship between RF subunit overlap and neuron separation
Each data point represents one pair of neurons in the same population, with the distance measured between 
the center of their respective cell bodies plotted against the RF subregion overlap index for that pair. There 
was no significant correlation between the values (r = 0.036, n = 3422 pairs).  
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Supplementary Figure 5. Relationship between RF subunit overlap and activity correlations

subregions of the two neurons overlap completely (overlap index = 1). (c) Calcium signals and estimated spike 
rates from the two neurons during sparse noise visual stimulation. (d) The spike rate cross-correlation of the 
two neurons, while significant, was lower for stimulus-evoked than for spontaneous activity. (e) A Venn 
diagram shows that the neurons tended to respond to different frames of the visual stimulus. (f,g) Across the 
dataset, while some neurons showed substantial activity cross-correlations, there were only weak relation-
ships between (f) the strength of the cross-correlation and the overlap index (Pearson’s r = 0.13; P < 10-5) or 
(g) the distance between cell bodies (Pearson’s r = -0.053; P = 0.0021).

Supplementary Figure 5. Relationship between RF subunit overlap and activity correlations

(a) Two simultaneously imaged neurons (separated by over 100 µm) exhibiting shared RF 
subregions. (b) The subregions of  the two neurons overlap completely (overlap index = 1). (c) 
Calcium signals and estimated spike rates from the two neurons during sparse noise visual 
stimulation. (d) The spike rate cross-correlation of the two neurons, while significant, was lower for 
stimulus-evoked than for spontaneous activity. (e) A Venn diagram shows that the neurons tended 
to respond to different frames of the visual stimulus. (f,g) Across the dataset, while some neurons 
showed substantial activity cross-correlations, there were only weak relation- ships between (f) 
the strength of the cross-correlation and the overlap index (Pearson’s r = 0.13; P < 10-5) or (g) the 
distance between cell bodies (Pearson’s r = -0.053; P = 0.0021).
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Supplementary Figure 6. Cross-correlations from raw fluorescence signals are higher 
than from deconvolved signals 
(a) For the same set of neurons, we calculated the pairwise cross-correlations using raw 
fluorescence traces and deconvolution-based estimated spike rate time courses (n = 1101 
pairs).  (b) Cross-correlation values obtained from raw fluorescence signals were greater than 
those obtained from estimated spike rate time courses. In many cases the difference was over 
2-fold.
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Supplementary Figure 6. Cross-correlations from raw  fluorescence signals are higher 
than from deconvolved signals

(a) For the same set of neurons, we calculated the pairwise cross-correlations using raw 
fluorescence traces and deconvolution-based estimated spike rate time courses (n = 1101 
pairs). (b) Cross-correlation values obtained from raw  fluorescence signals were greater than 
those obtained from estimated spike rate time courses. In many cases the difference was over 
2-fold.
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Supplementary Figure 7. Neurons that share one RF subregion, have subregions of the 
opposite sign that overlap less

(a) Example cells are shown, with both their ON and OFF RF subregions. Note that the lower 
group of cells is the same shown in bottom of Fig. 4a. Here, both the ON and OFF RF 
subregions are shown. (b) Subregions that are shared overlap to a high degree, but in those 
same cells, subregions of the opposite sign overlap less (P=0.0097, paired t-test, n=13). Note 
that high overlap is only one of the three criteria for shared RF subregions. The opposite sign 
subregions with high overlap indices differed in size and/or were centered on different points in 
visual space, and thus were not shared.

Subregions

O
N

O
FF

a b

Neurons

O
N

O
FF

Subregions

20°

Neurons

100 !m

In pairs of neurons that share
at least one RF subregion

0

1

M
ea

n 
ov

er
la

p 
in

de
x

Sha
red

 su
bre

gio
n

Opp
os

ite
 si

gn
 su

bre
gio

n

P = 0.0097

Supplementary Figure 7. Neurons that share one RF subregion, have subregions of the opposite sign 
that overlap less
(a) Example cells are shown, with both their ON and OFF RF subregions. Note that the lower group of cells is 
the same shown in bottom of Fig. 4a. Here, both the ON and OFF RF subregions are shown. (b) Subregions 
that are shared overlap to a high degree, but in those same cells, subregions of the opposite sign overlap less 
(P=0.0097, paired t-test, n=13).
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Supplementary Figure 8. Automated identification of regions of interest 
(a) In the first of two adjacent frames (at 15.6 frames/s acquisition), the circled neuron appears with very low 
contrast against the background (Frame 1), but during a spike in the next frame the neuron was clearly visible 
(Frame 2). Therefore, instead of using an average signal to define regions of interests, we used the entire spatio

-

temporal data set. (b) The temporal cross-correlation of each pixel with its adjacent neighbors was used to identify 
putative neurons and processes. (c) The local cross-correlation image was then filtered with an adaptive local 
threshold. Finally, a series of morphological filters were used to define candidate neuron locations. 

Supplementary Figure 8. Automated identification of regions of interest

(a) In the first of two adjacent frames (at 15.6 frames/s acquisition), the circled neuron appears 
with very low  contrast against the background (Frame 1), but during a spike in the next frame 
the neuron was clearly visible (Frame 2). Therefore, instead of using an average signal to define 
regions of interests, we used the entire spatiotemporal data set. (b) The temporal cross-
correlation of  each pixel with its adjacent neighbors was used to identify putative neurons and 
processes. (c) The local cross-correlation image was then filtered with an adaptive local 
threshold. Finally, a series of  morphological filters were used to define candidate neuron 
locations.
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Supplementary Figure 9. The average subregion sampling of visual space 
After obtaining the RFs for a local population of neurons in visual cortex (over the 230 x 230 !m imaging 
region), we plotted all subregions in one visual space. In order to combine data form multiple animals, the 
center of mass of each ensemble (ON or OFF) was centered at the origin (0,0). Next, the ensembles for all 
animals were averaged together. The resulting map is significantly elongated in the horizontal axis. This is 
likely related to the smaller cortical magnification factor observed for azimuth (~0.01 mm/°) compared to 
elevation (~0.02 mm/°) in mouse monocular cortex, observed in both intrinsic imaging (Kalatsky and Stryker, 
2003) and extracellular recording (Wagor et al., 1980).

Supplementary Figure 9. The average subregion sampling of visual space

After obtaining the RFs for a local population of neurons in visual cortex (over the 230 x 230 µm 
imaging region), we plotted all subregions in one visual space. In order to combine data form 
multiple animals, the center of mass of each ensemble (ON or OFF) was centered at the origin 
(0,0). Next, the ensembles for all animals were averaged together. The resulting map is 
significantly elongated in the horizontal axis. This is likely related to the smaller cortical 
magnification factor observed for azimuth (~0.01 mm/°) compared to elevation (~0.02 mm/°) in 
mouse monocular cortex, observed in both intrinsic imaging (Kalatsky and Stryker, 2003) and 
extracellular recording (Wagor et al., 1980).
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Supplementary Figure 10. Retinal ganglion cell density as a function of mosaic spacing and number of 
mosaics 
Using an estimate of retinal magnification factor (31 !m/°; Remtulla and Hallett, 1985), and assuming retinal 
mosaics with a small amount of noise matched to observed data (Wassle et al., 1981), the density of retinal 
ganglion cells has been computed as a function of the number of mosaics and cell spacing within each matrix. 
The observed range of cell density (Drager and Olsen, 1981; Salinas-Navarro et al., 2009) is indicated on the 
logrithmic color scale bar. The dotted lines indicate the parameter estimates based on a recent survey of 
mouse retinal ganglion cell types (Völgyi et al., 2009). The number of different cell types was based on 
anatomical classificiation, the cell spacing was estimated here as 1.25 * average dendritic tree radius reported 
for the 22 cell types identified in the study. Note that the estimated parameters fail to account for the full cell 
density observed in retinal ganglion cell counting studies by a factor of 5-8.

Supplementary Figure 10. Retinal ganglion cell density as a function of mosaic spacing 
and number of mosaics

Using an estimate of  retinal magnification factor (31 µm/°; Remtulla and Hallett, 1985), and 
assuming retinal mosaics with a small amount of noise matched to observed data (Wassle et al., 
1981), the density of  retinal ganglion cells has been computed as a function of  the number of 
mosaics and cell spacing within each matrix. The observed range of cell density (Drager and 
Olsen, 1981; Salinas-Navarro et al., 2009) is indicated on the logarithmic color scale bar. The 
dotted lines indicate the parameter estimates based on a recent survey of  mouse retinal 
ganglion cell types (Völgyi et al., 2009). The number of  different cell types was based on 
anatomical classification, the cell spacing was estimated here as 1.25 * average dendritic tree 
radius reported for the 22 cell types identified in the study. Note that the estimated parameters 
fail to account for the full cell density observed in retinal ganglion cell counting studies by a 
factor of 5 – 8.



Supplementary Note 1
Low firing rates can reduce correlation coefficients

The Fano Factor (variance-to-mean ratio) of sparse noise movie-evoked spike trains 
obtained during on-cell recordings was 1.34. This value indicates a slight tendency for 
“burstiness”, but is close to 1. A prior study on mouse visual cortex concluded that the 
Fano factor for layer 2/3 neurons was variable, but on average indistinguishable from 
1.0 (ref. 1). Thus we will use Poisson statistics as an approximation of the true spiking 
probability distributions.

Each stimulus frame was displayed for approximately 333 ms and the peak spike rate 
observed in our on-cell recordings for such an interval was  3.54 ± 2.18 spikes/s  (mean ± 
SD, n = 19). Thus, for a highly preferred frame that evokes a peak spike rate, within a 
duration of 333 ms, a mean of 1.18 spikes is expected. The probability of observing no 
spikes (1 - Presponse) is:
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Where r is the mean count (1.18 spikes) and Pr(n) is the probability of observing 
n spikes, given the mean rate r. This yields a probability of 0.31 for observing 
zero spikes in response to a preferred stimulus, or a response probability of just 
0.69. Given two identical neurons, each receiving identical input, the probability 
of them both responding to the same stimulus presentation is 0.48. This shows 
how the low spike rates can limit the maximal correlation coefficients to values 
much less than 1.0. Note that this estimated upper limit for correlations matches 
the maximal values of correlations we have observed (Supplementary Fig. 5). 
 
 
 
 

 

Where r is the mean count (1.18 spikes) and Pr(n) is  the probability of observing n 
spikes, given the mean rate r. This  yields a probability of 0.31 for observing zero spikes 
in response to a preferred stimulus, or a response probability of just 0.69. Given two 
identical neurons, each receiving identical input, the probability of them both responding 
to the same stimulus presentation is 0.48. This shows how the low spike rates  can limit 
the maximal correlation coefficients to values  much less than 1.0. Note that this 
estimated upper limit for correlations  matches the maximal values of correlations we 
have observed (Supplementary Fig. 5).

These low correlations, together with the low probability for sharing both ON and OFF 
RF subregions (Supplementary Fig. 7), indicates that groups of neurons that share a 
subregion do not represent redundant units of cortical circuitry.
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Supplementary Note 2
An estimate of the number of RGCs afferent to the portion of visual cortex in the 
field of view

We have used the following equations, together with known parameters of the mouse 
visual system, to estimate an upper bound on the number of RGCs that encode the 
same area of visual space as the area of visual cortex we imaged, giving 1270 RGCs.

            (Eq. 1)

                     (Eq. 2)

Symbol Parameter Value or equation

NRGC Number of RGCs Eq. 1

DRGC Density of RGCs 5000 (refs. 2, 3)

Aretina Area of retina that encodes the same area 
of visual space encoded by the portion of 
visual cortex imaged

Eq. 2

Xim
Yim

X (azimuth) and Y (elevation) dimensions of 
the visual cortex imaged 230 µm (for both  and )

mcortex,X 
mcortex,Y

Cortical magnification factor for azimuth (X) 
and elevation (Y)

0.01 mm/° (azimuth) and 0.02 mm/° 
(elevation) (refs. 4, 5, also see 
Supplementary Fig. 7)

mretina Retinal magnification factor 31 µm/° (ref. 6) 

We call this an upper bound for several reasons:

(1) The estimated number of retinal mosaics (~20, ref. 7) and the spacing within 
these mosaics (estimated to be equal to the dendritic tree radius, which is  at the 
dense end of reported mosaics8, 9 result in cell densities approximately 5-10 fold 
less than what is  observed in RGC cell counts  (see Supplementary Fig. 10). 
Therefore, there may be many more mosaics to be discovered, or the spacings 
of those mosaics are even denser than estimated here. Alternatively, RGC 
counting methods may overestimate of the RGC population.

(2) Some RGC types will not project to V1-projecting relay neurons  in the dorsal 
lateral geniculate nucleus.

(3) Some RGC types may not respond strongly to our visual stimulus and thus will 
not appreciably contribute to our measured receptive fields.
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We call this an upper bound for several reasons: 

(1) The estimated number of retinal mosaics (~20, Ref. 12) and the spacing 
within these mosaics (estimated to be equal to the dendritic tree radius, 
which is at the dense end of reported mosaics1, 13 result in cell densities 
approximately 5-10 fold less than what is observed in RGC cell counts 
(see Supplementary Fig. 10). Therefore, there may be many more 
mosaics to be discovered, or the spacings of those mosaics are even 
denser than estimated here. Alternatively, RGC counting methods may 
overestimate of the RGC population. 

(2) Some RGC types will not project to V1-projecting relay neurons in the 
dorsal lateral geniculate nucleus. 

(3) Some RGC types may not respond strongly to our visual stimulus and 
thus will not appreciably contribute to our measured receptive fields. 
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Supplementary Note 3
Retinal ganglion cell mosaics and their potential influence on V1 receptive fields

Retinal ganglion cells (RGCs) of a given type form a regular mosaic and tile the retina, 
resulting in homogeneous coverage. Since each RGC type forms its  own mosaic, the 
nearest-neighbor distances among RGCs of different types are typically smaller than 
those among RGCs of the same type9. This characteristic spacing between RGCs has 
motivated a model of cortical development which shows that this feature can play a key 
role in influencing the structure of V1 receptive fields and orientation columns in cats9-12.

Similar to how RGC mosaics could influence V1 receptive fields  in cats, the shared V1 
RF subregions  we have observed may be a direct geometric consequence of RGC 
mosaics. Specifically, shared RF subregions could be due to shared input originating 
from a small number of RGCs, which is  consistent with a prediction for rodents11. 
Specifically, a large amount of subregion overlap and a low degree of convergence 
have been suggested as a way in which the model might be extended to rodents11. 

In cats, the model predicts that neighboring V1 cells will sample from very similar 
populations of RGC RFs10. The large magnification factor allows for this, and the result 
is  orientation columns. In rodents, neighboring V1 cells  will sample from a more diverse 
set of RGC RFs due to the small magnification factor. The result is a salt-and-pepper 
orientation map13. However, the magnification factor is not so small as to avoid 
occasional resampling of the same afferents, and this manifests itself as shared RFs.

Similarly, the offset coverage of ON and OFF RF subregions within a local population 
could be due to the low degree of divergence in the mouse visual pathway and a 
relatively small population of RGCs contributing to V1 RF subregions. With small 
samples of ON and OFF RGC RFs, spatial inhomogeneities may be exaggerated. Thus, 
these two features of RFs in local populations of mouse V1 may be a direct 
consequence of RGC mosaics.
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Supplementary Note 4
Comparison of divergence in the cat and mouse visual pathways

In addition to the potentially common aspects of visual processing in mice and other 
species, there are special aspects of the mouse visual pathway that may influence the 
features we observed. The layer 2/3 neurons  we imaged were found to have non-
overlapping ON and OFF RF subregions, indicating that they are simple cells, 
consistent with results from extracellular recording in mice1, 14. By contrast, in the cat, 
layer 2/3 neurons are typically complex15 and exhibit overlapping ON and OFF RF 
subregions16. 

Another difference is that the large degree of divergence in the cat visual pathway is not 
present in mice. In the cat, dorsal lateral geniculate nucleus (dLGN) cell counts are 
about 3.4 – 6.2 times those for retinal ganglion cells (RGCs)17-22, and this supports 
divergence on the order of 10 (ref. 23). In the mouse, the situation is reversed, with 
RGC counts being about 2.7 times those for the dLGN24, and since the convergence is 
known to be about 1 – 3 (ref. 25), the divergence is limited to the order of 1, since the 
ratio of divergence to convergence is  equal to the ratio of the numbers of postsynaptic 
cells to presynaptic cells. However, like the cat, this synapse may exhibit cell-type 
specificity, with dLGN neurons  receiving input from a single or a select group of RGC 
types8, 26, 27. 

The thalamocortical connection is another source of divergence in the cat visual system, 
with about 450 mm2 of cortical area28, 29 receiving input from approximately 500,000 
dLGN neurons17, 18. In the mouse, about 2 mm2 of cortex4, 30 receives  input from 
approximately 10,000 dLGN neurons24, so although the cat has 50-fold more dLGN 
neurons, it also has 225-fold more cortical area for primary visual cortex (V1) than the 
mouse. The low degree of divergence in the mouse visual system is an important 
difference between the cat and mouse visual systems and may contribute to the feature 
of shared RF subregions. Thus, shared RF subregions are more likely to be found in 
cortical areas with a low degree of divergence, such as intracortical projections, rather 
than the large divergence of cat V1.
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